Research. Molecules rev

Author: Nikola Benin


Come October, six of the world’s most advanced vehicles will race for glory over a track made of gold. Only you won’t be able to see the groundbreaking event, because each competitor will be just nanometres in size.

This is the NanoCar Race, and it is being held at the materials lab CEMES at the National Center for Scientific Research (CNRS) in Toulouse, France. The idea is to encourage the development of technology made of single atoms and molecules that could one day revolutionise areas such as electronics.

Electron power

The electrons from the STM pass through the molecular cars, imparting some energy as they do so. This energy is enough to jolt the molecules into a slightly different configuration – for example, turning the parts of the molecules that resemble wheels – so that they crawl along.

Fragile wires

But building computers with single molecules is by no means easy. One problem is passing information in the form of electrons from one molecular processing unit to another, as metallic wires are unstable on the nanoscale.

In the EU-backed ARTIST project, Dr Gourdon and his colleagues tried to develop alternative methods. ‘We wanted a completely new way of thinking about this transport of information,’ he said.

One possibility they developed is the use of ‘plasmonic’ wires. These convey information in single particles of light – photons – but can convert the signals back into electrons at either end.

ARTIST also explored ways to store information on the nanoscale. Here the researchers found that, with developments in STM technology, they could inject and withdraw single electrons from individual atoms of gold, potentially offering a way to encode the binary values zero and one.

That project has ended, and Dr Gourdon is now working on another EU-backed project called PAMS that seeks to develop ways to form individual molecules on flat surfaces. ‘We have to re-invent chemistry in two dimensions, somehow,’ he said.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s